Race Warm Up and Warm Down
\qquad

- To review lactate production, glycolysis and the different energy systems
- To provide information about current thinking in warm down protocols
- To introduce other recovery methods

Energy Systems

Approximate relative contribution of energy metabolism phases to swimming races: based on experienced senior swimmers

- Adapted from Maglischo 1993

COMPETITION TIME	COMMON SWIMMING DISTANCE	ATP-PC (\%)	GLYCOLYSIS (\%)	AEROBIC (\%)
$\mathbf{1 0 - 1 5 ~ s e c ~}$	25	80	20	Negligible
$\mathbf{1 9 - 3 0 ~ s e c ~}$	50	50	48	2
$\mathbf{4 0 - 6 0 ~ s e c ~}$	100	25	65	10
$\mathbf{1 . 3 0 - 2 ~ m i n s}$	200	10	65	25
$\mathbf{2 - 3} \mathbf{~ m i n s}$	200	10	50	40
$\mathbf{4 - 6} \mathbf{~ m i n s}$	400	5	45	50
$\mathbf{7 - 1 0}$ mins	800	2	30	65
$\mathbf{1 4 - 2 2} \mathbf{~ m i n s}$	1500		20	78

Anaerobic glycolysis

www.rohan.sdsu.edu

- The process of returning all body systems to resting levels following intensive swimming
- Removal of Lactate
- Reduce Hydrogen ion concentration
- Return muscle and blood pH to normal
- Resynthesize Phosphocreatine
- Hormonal changes
- Repair muscle
- Psychological recovery
- Replenish glycogen stores
- Different systems have different timescales for recovery
- Muscle lactate
- Begins to drop immediately after exercise
- Blood lactate
- Continues to rise for several minutes after exercises
- Phosphocreatine resynthesis
- Occurs mainly within the first 6 minutes
- Hormonal changes
- Several hours to return to pre exercise level
- Muscle repair
- Several days

- Active recovery shown to be better to aid recovery than passive recovery (Felix et al 1997, Beckett et al 1993, Denadai et al 2000, Lomax M 2011)
- Steady swimming after an intense rep or race will improve the speed of recovery
- Aim of warm down is to maximise the speed of recovery

Image from (Wilmore et al., 2008)

Active Vs Passive

- Adapted Carzola et al 1983
- If both swimmers reached 10 mM the 20% mark would be recovery which would be 2 mM
- Swimmer a-active-reached 2 mM at 20 minutes
- Swimmer B-passive-2Mmol at 50 minutes
- Sprinters
- Muscle mass
- Higher percentage fast twitch
- Individual changes to the swim down should be addressed such as event, intensity, type of swimmer, further racing
- British swimming data from 3 years-
- Average of 1400 M to reduce lactate to $<2 \mathrm{mMol}$
- Maximize Oxygen consumption to enhance PCr resynthesis
- Help reconvert lactate to pyruvate and metabolise aerobically
- Use large muscles in legs to assist blood flow
- Very light exercise
- Good blood flow
- Swimming at a moderate pace to stimulate the muscle pump action
- Increases muscle circulation after the initial light swim

- Blood lactate rises for the first few minutes (3-7)
- Followed by a period of rapid removal
- Then slower more constant removal phase
- Generally higher maximal lactate the longer the swim down
- Need to replace fuel glycogen stores
- High intensity exercise depletes glycogen stores
- 30 minute window but quicker refuel essential
- 50-70gCarbs and 20-30g protein, low fat
- Protein plus a high carb drink (max 8\%) should be use during swim down if high intensity exercise has been performed
- Must take full drinks bottle and snack to swim down pool
- Swimmers should keep moving after the race
- Move arms and legs in the water and when out of the water
- Remove suits if time permits
- Get to swim down pool within 5 minutes of race finishing
- Replenishing glycogen stores essential
- Coaches shouldn't hold discussions with swimmers before swim down completed—brief points only with initial information

Swim down protocol

	Repetitions	Comments	Distance
3	200 m	Easy, own pace with unrestricted breathing if possible	200 m
4	$4 \times 100 \mathrm{~m}+30 \mathrm{~s}$ rest	Alternate FC and BC at a steady pace with good technique	600 m
5	$8 \times 50 \mathrm{~m}+20 \mathrm{~s}$ rest	Use 3 strokes (no Fly) and focus on kicking the legs	1000 m
6	$4 \times 100 \mathrm{~m}+30 \mathrm{~s}$ rest	Alternate FC and BC and swim at approx $50-60$ BBM (adjust for individuals)	1400 m
7	Take Heart Rate or Lactate	If below 100 BPM or <2 mM SD complete If above 100 BPM or $>2 \mathrm{mM}$ continue SD	
8	$4 \times 100 \mathrm{~m}+30 \mathrm{~s}$ rest	Alternate FC and BC and swim at approx $50-60$ BBM (adjust for individuals)	1800 m
9	Take Heart Rate or Lactate	If below 100 BPM or $<2 \mathrm{mM}$ SD complete If above 100 BPM or $>2 \mathrm{mM}$ continue SD	
.			

- Too little warm down may compromise subsequent performance
- Too much warm down for a fit swimmer will not compromise subsequent performance
- Junior swimmers
- Get used to 1400M swim down
- Refuel ASAP
- If no second pool consider
- Swim down after session in main pool
- Stretch in warm shower
- Keep moving
- Maintain body temperature
- Nutrition
- Sleep
- Massage
- Ice Baths
- Stretches
- Recovery suits
- Rolling and trigger point ball
- Eases muscle tension and massage effect
- Electrical simulation
- Common in USA and Canada

Recovery Options

Food Name	Measure	Energy (Kcal)	Carbohydrate (grams)	Protein (grams)	Fat (grams)
Apples	1 x	53	13.1	0.5	0.1
Bananas	1 x	285	70	3.6	0.9
Cheese cottage (plain)	100 g serving	101	3.1	12.6	4.3
Yazoo	1 bottle	273	41	15.4	6.4
Muller Rice (original)	1 Pot	196	32	6.8	4.9
Natures Valley Honey \& Oat bar	1 Pack (2 slices)	190	32	4	6
Oranges	1 x	59	13.6	1.8	0.2
Raisins	Box	77	19.6	0.6	0.1
Sandwich Chicken salad (white bread)	1 sandwich	359	46	22	10.9
Semi-skimmed Milk	1 Pint	261	27	19.9	9.7
Trail mix	Handful	173	14.9	3.6	11.4
Tuna (can)	1 can (180g)	129	0	31	0.8
Yoghurt Muller - Fruit Corner (all flavours)	1 Pot	158	22	5.7	5.7

Banana \& Tuna
Or
$4 \times$ Muller Yoghurt
Or
$2 \times$ Apple \& 1 Pint of Semi Skimmed milk
Or
Nature Valley bar \& Pint of milk
Or
200 g cottage cheese \& $2 \times$ orange $\& 2$ Apples

Sleep

- Sleep loss can lead to glycogen depletion
- Close connection between sleep and immune system
- Sleep deprivation linked to inflammatory system
- Body repairs during sleep

Massage

Study from Beijing
Athletes spending longest
 on massage table generally underperformed

Other recovery methods

- Stretches
- Work on returning soft tissue to optimum length
- Prevention of trigger points
- Possibly may reduce the DOMS severity after overload exercise
- Recovery suits
- Pressure garments to improve venous return and blood flow from the leg muscles back up to the heart
- Lack of research on sports suits

manceacam
- Ice Baths
- Limits strength gains
- Static
- Often not deep-no hydrostatic changes

- Cold water immersion
- Deep moving water
- Cold reduces blood flow from legs
- Hydrostatic effect
- anti-inflammatory
- Reduces CK efflux
- Not in heavy training phase

Questions

Thank You

